Ab initio calculations of the optical and electronic properties of Bi_2WO_6 doped with Mo, Cr, Fe, and Zn on the W-lattice site

V. Koteski, J. Belošević-Čavor, V. Ivanovski, A. Umićević, D. Toprek Vinča Institute of Nuclear Sciences, University of Belgrade, 11001 Belgrade, Serbia

Abstract

Substitutionally doped $\text{Bi}_2 W_{1-x} M_x O_6$ (M = Mo, Cr, Fe, Zn; x = 0.125, 0,25, 0.5) is investigated using the density functional theory (DFT). For all the investigated transition metal dopants, the optical properties in the visible light range are improved over the undoped $\text{Bi}_2 WO_6$. Irrespective of concentration, the lattice relaxation around the dopants is constrained to the first coordination shell. Mo, Fe, and Cr introduce localized defect states in the band gap, contributing to band gap narrowing. The localized states are hybridized between the impurity d-bands and host W 5d- and O 2p-states. Zn facilitates the reduction of the band gap by inducing a shift of the states near the top of the valence band toward higher energies. Our results suggest that Zn doping on the W lattice site may improve the photocatalytic properties of Bi_2WO_6 more than the other dopants.

1 1. Introduction

Recently, there has been a growing interest in developing efficient visible light driven photocatalysts that would be used for decomposition of organic pollutants and photocatalytic hydrogen production [1]. While TiO₂ is a superior photocatalyst for fuel cell production, water treatment, environmental protection, and other applications, it is mainly active under ultraviolet radiation which is less than 5 percent of the total solar radiation. Therefore, one of the main goals of visible light photocatalysis is searching for TiO₂ alternatives

Preprint submitted to Elsevier

that can use solar energy more effectively. Among the promising materials for visible light spectrum photocatalysis is Bismuth tungstate (chemical formula Bi_2WO_6), which exhibits excellent performance in the photodegradation of pollutants under visible light [2–5] and a notable activity to inactivate Escherichia coli [6].

¹⁴ Bi₂WO₆ belongs to the class of perovskite-like Aurivillius compounds of ¹⁵ Bi₂A_{n-1}B_nO_{3n+3} type (A and B are cations with different atomic coordination). ¹⁶ In the case of Bi₂WO₆, W is a 6–fold coordinated atom positioned in the center ¹⁷ of an oxygen octahedron and n = 1. The structure is presented in Fig. 1 ¹⁸ and constitutes of WO₄²⁻ perovskite-like layers alternating Bi₂O₂²⁺ fluorite-like ¹⁹ layers.

Apart from single crystals, Bi₂WO₆ comes in many different forms, includ-20 ing nano-particles, nano-plates, helix-like structures, flower-like structures, thin 21 films, and other superstructures [7]. Even though Bi_2WO_6 can absorb in the 22 visible range, its photocatalytic activity is still low to be comparable to that 23 of TiO_2 [8]. This is mostly due to its high electron/hole recombination rate, 24 which is a result of the relatively low potential of the Bi_2WO_6 conduction band 25 which prevents the trapping of activated electrons by O_2 to form superoxide ion 26 O_2^{2-} [2, 8]. The photocatalytic performance strongly depends on the structure, 27 shape, and form of the material, but it can also be affected by incorporating 28 foreign atoms. 29

Foreign dopants, more than the structure itself, can help improve the electron-30 hole lifetimes and expand the region responsive to visible light, thereby improv-31 ing the overall photocatalytic activity. With regard to the improvement of the 32 photocatalytic properties, the dopants may also play a crucial role by changing 33 the position of its levels in the valence band (VB), within the band gap, or in 34 the conduction band (CB). The dopant levels may also expand or shorten the 35 width of the valence or conduction band, directly affecting the mobility of the 36 photogenerated charges. 37

³⁸ Doping has been a widely used strategy to decrease the recombination of pho-³⁹ toinduced electron-hole pairs in Bi_2WO_6 . For instance, Tian et al. showed that

Gd doping has great influence on the photocatalytic activity and microstruc-40 ture of Bi₂WO₆ [9]. Guo et al. successfully produced Fe-ions modified Bi₂WO₆ 41 nanosheets, with improved photocatalytic activity for the degradation of gaseous 42 toluene [10]. Zhang et al. demonstrated that $Bi_2Mo_{0.25}W_{0.75}O_6$ shows much 43 higher activity than Bi_2WO_6 under visible light [11]. Shi et al. showed that the 44 photocatalytic activity of F^- substituted Bi_2WO_6 for degradation of methylene 45 blue under visible light irradiation increased about two times compared to pure 46 Bi_2WO_6 [12]. Doping Bi_2WO_6 with Br also proved to be a way to produce 47 samples with better photocatalytic activity [13, 14]. Also it has been reported 48 that doping Bi_2WO_6 with many other metals, such as Lu [15], Ag [16], Cu [17], 49 Mo [18], Zn [19], Zr [20], Er [21–23], Pt [24], Sr [25], Cd [26], Eu, La [27], and 50 Ba [28] raised the degradation rate of pollutants under visible light. Several 51 studies of codoped Bi_2WO_6 [21, 29, 30] also exist in the literature. 52

In this work we investigate the changes in structural, electronic, and optical 53 properties of Bi₂WO₆ upon doping with Cr, Mo, Fe, and Zn transition metals. 54 The electronic properties of the system are strongly affected by the new chem-55 ical environment established by the dopants. After replacing one or several W 56 atoms with transition metals, we calculated the changes in the corresponding 57 bond lengths, band structure, density of states (DOS), and optical absorption 58 coefficients. Cr and Mo were chosen as isoelectronic elements with respect to 59 the host constituent, W. Fe is often used in doping of various material. Zn, 60 with its electronic configuration of occupied dopant states $(3d^{10})$ in the valence 61 band, is a good candidate for reducing the band gap, as observed in a previous 62 study [30, 31] for substitution on the Bi lattice site. 63

⁶⁴ 2. Calculation details

The calculations presented in this paper were performed using the Vienna *ab initio* simulation package VASP [32, 33]. VASP employs Projector Augmented Wave (PAW) pseudopotentials and plane waves to calculate the ground state properties of crystalline structures. The exchange and correlation effects

Figure 1: Crystal structure of Bi_2WO_6 projected onto the ac plane.

of the electronic system were accounted for within the generalized gradient approximation (GGA) in its PBE [34] implementation. In the calculation of the DOS we also used hybrid functionals to be able to give more accurate prediction of the size of the band gap and the position of the individual dopant levels. A cut-off energy of 300 eV along with a MonkhorstPack [35] k-point mesh of $7\times 3\times 7$ k-points for the pure system and $3\times 2\times 7$ k-points for the doped systems calculations were chosen.

76 3. Structural Properties

 Bi_2WO_6 crystallizes into the space group P21ab (No. 29) [36, 37]. It is 77 characterized by an orthorhombic unit cell with 36 atoms. The calculated lattice 78 parameters (a = 5.437, b = 5.622, and c = 16.923 Å) are in good agreement 79 with the experimental ones [36, 37] and the previously reported calculated ones 80 [38]. The impurity system was modeled by incorporating the dopant atoms 81 in a 72-atom supercell with $2 \times 1 \times 1$ geometry. As an example, the different 82 arrangements of iron substituting on the tungsten sublattice are shown in Fig. 83 2. The a, b, and c parameters of the supercells were fixed to the values derived 84 from the lattice parameters of the pure optimized orthorhombic unit cell. We 85 considered three different concentrations of 12.5%, 25%, and 50% (corresponding 86 to a replacement of 1, 2, and 4 W atoms, respectively). After the substitution, 87 all the atoms in the supercell were allowed to relax with force minimization 88 criterion of $0.03 \text{ eV}\text{\AA}^{-1}$. The atomic positions were rearranged at each ionic 89 step according to the interatomic Hellmann-Feynman forces calculated with 90 VASP. Using the Broyden Fletcher Goldfarb Shanno (BFGS) quasi-Newton 91 optimization method, as implemented in the Atomic Simulation Environment 92 python interface [39], the inner degrees of freedom of the atoms were minimized 93 to the corresponding nearest local minima. 94

On average, the substituting atoms perturb the host lattice to a different extent depending on their type. Our calculations indicate that there are no sizable displacements or rearrangements of atoms. The effects of the transition

Figure 2: Different configurations of iron doped Bi_2WO_6 calculated in this work: left 12.5%, center 25%, and right 50% of W atoms replaced by Fe.

metal substitution are largely confined to the nearest neighbor (NN) atomic
 coordination.

Mo, as an isoelectronic dopant, seems to perturb the host lattice the least. 100 This is reflected in the positions of the NN oxygen atoms only slightly displaced 101 from their original lattice sites (see Tab. 1). The other isoelectronic dopant, Cr, 102 has a considerably smaller atomic radius than W. As a result, the perturbation 103 it induces in the lattice is larger. This is visible in the shortening of the four 104 Cr-O bond lengths present within in the WO_4 layer. In contrast, the remaining 105 two Cr—O bond lengths that connect chromium to the adjacent $\mathrm{Bi}_2\mathrm{O}_2$ layers 106 are elongated. Compared to the Cr-doped systems, the structural optimization 107 of Zn-doped Bi₂WO₆ shows that the NN oxygen atoms relax in the opposite 108 direction: the two Zn—O bonds that bridge the WO₄ layers are shortened, 109 while the majority of the other four distances are elongated. Fe is similar to 110 Mo because it introduces only a very small perturbation of the NN distances. 111 The bond lengths in Tab. 1 are given for the systems with 50% concentration 112 of dopant atoms. It is noteworthy that nearly the same optimized distances are 113 obtained after the lattice optimization of the supercells with 12.5% and 25%114 concentration of dopant atoms, indicating that the structural perturbation is 115 localized in the vicinity of the foreign atom. 116

Table 1: Displacement of the 6 NN oxygen atoms after dopant substitution on the W sublattice in $Bi_2W_{0.5}M_{0.5}O_6$ (M = Mo, Cr, Fe, and Zn). The NN distances are given as percentage changes from the ideal pure host distances.

	d(Å)		$d(\text{\AA})$	$\Delta d(\%)$		$d(\text{\AA})$	$\Delta d(\%)$		$d(\text{\AA})$	$\Delta d(\%)$		$d(\text{\AA})$	$\Delta d(\%)$
W-O1	1.877	$Mo-O_1$	1.893	+0.9	${\rm Cr-\!O_1}$	1.783	-5.0	$Zn-O_1$	1.910	+1.8	$\rm Fe-O_1$	1.888	+0.6
$W-O_2$	1.943	$Mo-O_2$	1.932	-0.6	${\rm Cr-O_2}$	1.789	-7.9	$Zn-O_2$	1.935	-0.4	$\rm Fe-O_2$	1.944	+0.05
W-O ₃	1.789	Mo—O ₃	1.757	-1.8	$Cr-O_3$	1.661	-7.2	$Zn-O_3$	1.920	+7.3	$Fe-O_3$	1.717	-4.0
W-O ₄	1.813	Mo—O ₄	1.818	+0.3	$Cr-O_4$	1.678	-7.4	$Zn-O_4$	2.055	+13.3	$Fe-O_4$	1.785	-1.5
$W-O_5$	2.120	${\rm Mo-O_5}$	2.153	+1.6	${\rm Cr-\!O_5}$	2.196	+3.6	${\rm Zn-\!O_5}$	1.977	-6.7	$\rm Fe-O_5$	2.193	+3.4
W-O ₆	2.241	Mo—O ₆	2.240	-0.05	$Cr-O_6$	2.313	+3.2	$Zn-O_6$	2.084	-7.0	${\rm Fe-O_6}$	2.275	+1.5

117 4. Density of states

The standard LDA and GGA functionals, including the PBE functional used 118 in this work, perform relatively well for structural relaxation, but when it comes 119 to calculating the DOS of solids, they underestimate the size of the band gap 120 [40]. In our case, the PBE calculations gave 1.4 eV for pure Bi_2WO_6 , which 121 is considerably smaller than experimental band gap that is between 2.7 and 122 2.9 eV, depending on the crystal state and morphology [11, 41–44]. Therefore, 123 for the DOS calculations of the pure and doped systems, we have chosen the 124 Heyd-Scuseria-Ernzerhof HSE06 screened hybrid functional [45]. This version 125 is similar to the more popular PBE0 hybrid functional in terms of accuracy 126 and thermochemistry, but it has better convergence properties [46]. First order 127 Methfessel-Paxton smearing with smearing width of $\sigma = 0.05$ eV was used for 128 the partial occupation of the atomic orbitals in all the DOS calculations. 129

Using the HSE06 functional, the size of the calculated band gap of pure Bi₂WO₆ was improved to 2.47 eV. From the *DOS* given in Fig. 3, it is evident that the valence band is mainly composed of O–2*p*–states along with a certain amount of Bi–6*p*– and 6*s*–states and W–5*d*–states. The conduction band is a mixture of W–5*d*–, O–2*p*–, and Bi–6*p*–states, which is consistent with the previously reported calculated results [3, 29].

The partial density of states (*PDOS*) presented in Fig. 4 offers additional details about the electronic structure. The doping with all the four transition metals introduces significant changes in the band gap size and shape. These

Figure 3: Density of states of undoped Bi₂WO₆ obtained with the HSE06 hybrid functional.

changes are particularly visible near the top of the VB and bottom of the CB. 139 Band gap reduction is observed in all the four plots, mostly due to the 140 presence of deep impurity states in the band gap. However, the changes near the 141 top of the VB in the Zn-doped system are not a result of a significant presence of 142 Zn-bands. In this case, there is a split off of states near the top of the VB. This 143 is a result of a dopant-host interaction, i.e., interaction between the Zn-3d-states 144 situated about 7 eV below the top of the VB, and host O-2p-states close to 145 the VB maximum. 146

Our calculated band gap reduction for $Bi_2W_{0.5}Mo_{0.5}O_6$ is about 10 % (band 147 gap of 2.24 eV vs. 2.47 eV for pure Bi_2WO_6), in excellent agreement with the 148 measurements [11, 18]. From the PDOS, it can be seen that Mo and Cr, with 149 their respective 4d- and 3d-states, introduce deep levels within the band gap of 150 Bismuth tungstate. In both cases, these levels are hybridized with the nearby 151 O-2p- and W-5d-states. The Mo dopant levels are adjacent to the bottom 152 of the CB and hybridize more strongly with bands of W 5d character. By 153 comparison, the Cr-levels are further below and hybridize with the neighboring 154 tungsten d electrons to a much smaller degree. 155

Iron contributes with two separate deep levels within the band gap, both of

Figure 4: PDOS of Bi_2WO_6 using the HSE06 hybrid functional.

Figure 5: Optical absorption coefficient for pure Bi_2WO_6 compared to Bi_2WO_6 doped with Mo, Zn, Cr, and Fe.

which are hybridized with host bands similar to the the Cr– and Mo–doped systems. In this case, however, the impurity levels are at almost equidistant positions from the top of the VB and the bottom of the CB.

As indicated, Zn does not introduce any deep defect levels in the band gap 160 directly. Similar electronic structure was observed in previous calculations [31] 161 where Zn substitution on Bi lattice site was studied. This behavior could make 162 Zn a dopant of choice, as the impurity levels in the band gap often serve as 163 recombination centers, reducing the photocatalytic activity. The excellent prop-164 erties of Zn–doped Bi₂WO₆ have already been observed in some measurements, 165 showing that the addition of 12% of Zn leads to a photocurrent enhancement of 166 up to 80%. Our HSE06 calculations indicate substantial changes at the top of 167 the VB, a VB shift in upward direction, and a consequent band gap reduction. 168 However, besides the absorptivity and the mobility of photoexcited charge 169 carriers, the photocatalytic activity of the semiconductor is also governed by 170 the positions of its conduction band minimum (CBM) and valence band max-171 imum (VBM). For example, the photocatalytic decomposition of organic con-172

taminants requires that the VB of the photocatalyst must match the potential

174	level of oxidizing the organic contaminants. The VB and CB energy level of a
175	semiconductor can be roughly calculated from the formulas [31] $\rm E_{VB}$ = $\rm E_{CB}$ +
176	E_g and E_{CB} = X - E_c - $E_g/2$, where E_{VB} and E_{CB} are the VB and CB edge
177	potentials, $E_{\rm c}$ is the energy of free electrons on hydrogen scale (\sim 4.5 eV), $E_{\rm g}$
178	is the band gap energy of the semiconductor and X is its Mulliken's electroneg-
179	ativity (6.22 eV for Bi_2WO_6). In order to match the experimental band gap
180	value of $\rm Bi_2WO_6,$ we employed 0.33 eV scissor operator. Our calculated $\rm E_{VB}$
181	for pure Bi_2WO_6 is 3.11 eV, which is more positive than the standard redox
182	potentials of OH/OH^- (1.99 eV) and oxygen evolution (1.23 eV), meaning that
183	Bi_2WO_6 can be used for these reactions. In contrast, its E_{CB} of 0.31 eV is not
184	suitable for hydrogen evolution, as it is more positive than the hydrogen reduc-
185	tion potential. The calculated E_{VB} and E_{CB} values for Mo-doped Bi_2WO_6 are
186	2.95 eV and $0.38 eV$, which means that its oxidation ability decreases and its
187	reduction ability remains almost unchanged. The oxidation ability of Zn-doped
188	Bi_2WO_6 ($E_{VB} = 2.85 \text{ eV}$) is comparable to that of the Mo-doped system, but its
189	reduction ability ($E_{CB} = 0.56 \text{ eV}$) is even worse. Thus we can conclude that the
190	enhanced photocatalytic oxidation properties of Zn -doped Bi_2WO_6 that have
191	been observed in some measurements, [19] can be attributed exclusively to the
192	increased visible light absorption of the Zn-doped material.

The width of the VB and CB is also affected by the dopants. A sizable 193 reduction of the width of the VB is observed in the case of Cr and Fe doping. 194 The width of the CB is affected to a lesser degree, but here we also observe a 195 small reduction. In the case of Mo dopant, a very slight reduction (by 0.1 eV) 196 of the CB width is observed, while the width of the VB remains the same. The 197 width reduction of the VB and CB may have a huge impact on the mobility 198 of the photogenerated charges, as the smaller widths of the VB and CB may 199 enhance the effective mass of the photogenerated charges and diminish their 200 mobility. In this respect, Cr and Fe may not be as ideal doping candidates as 201 the other two dopants. 202

203 5. Optical Properties

The absorption coefficient plots of pure and doped Bi_2WO_6 as a function of incident photon wavelength are shown in Fig. 5. They were obtained within the PBE formalism from the real and imaginary parts of the dielectric function, averaged over the three polarization vectors.

As can be seen, transition metal doping on the W lattice site considerably 208 improves the light absorption in the visible range between 400 and 700 nm. 209 The undoped Bi_2WO_6 is found to have the lowest absorbance in this region. 210 The steep shape of the spectra in the case of Bi_2WO_6 and $Bi_2W_{0.5}Mo_{0.5}O_6$, 211 indicates that the absorption in these systems is not due to transitions from 212 impurity levels, but is a result of direct band-gap transitions. The red shift 213 of the main absorption peak and better absorption in the region between 400 214 and 600 nm, as compared to Bi_2WO_6 , is found for $Bi_2W_{0.5}Mo_{0.5}O_6$. The ob-215 tained absorption spectrum for this system (see Fig. 5) is in excellent agreement 216 with the corresponding spectrum obtained from the UV-vis spectroscopic mea-217 surements [47]. The absorbance of Zn-doped Bi_2WO_6 tends to increase as the 218 wave-length increases, in contrast to the absorbance of Bi_2WO_6 doped with the 219 other dopants, which decreases as we approach the red end of the spectrum. 220 The different behavior of the absorption coefficient of Zn-doped Bi_2WO_6 is in 221 agreement with the different mechanism of its band gap reduction, as suggested 222 by the calculated electronic structure. 223

The absorbance does not seem to saturate much with increased dopant con-224 centration. As an illustration, Fig. 6 depicts the absorption coefficient plots 225 of Cr- and Zn-doped Bi₂WO₆ as a function of concentration. In general, the 226 absorbance is improved with concentration for all the transition metals consid-227 ered in this work for the majority of the visible wavelengths (Fig. 5). For the 228 Zn-doped system, the absorbance is markedly improved with concentration in 229 the region up to 2.9 eV (see Fig. 6, bottom), while the reverse seems to be true 230 for energies above the visible electromagnetic spectrum. 231

Figure 6: Optical absorption coefficient of Cr– and Zn–doped Bi_2WO_6 as a function of dopant concentration.

232 6. Conclusion

Based on the VASP simulation package we have conducted a series of cal-233 culations of transition metal dopants in Bi_2WO_6 . We have calculated the struc-234 tural relaxation, DOS, and optical absorption coefficient of Bi_2WO_6 doped with 235 Mo, Cr, Fe, and Zn. All the dopants contribute to the reduction of the band 236 gap and help improve the ability of optical absorption in the visible range. This 237 behavior has been explained by the presence of deep impurity states within the 238 band gap. However, for Zn-doped Bi_2WO_6 , the band reduction is a consequence 239 of shifting the top of the valence band under the influence of the Zn 3d-levels. 240 Among the investigated dopants, Zn could be considered the best candidate for 241 improving the optical characteristics of Bi_2WO_6 owing to the calculated band 242 narrowing without a direct presence of localized defect states in the band gap. 243 In addition, Zn doping on W lattice site does not seem to affect the mobility of 244 the generated charges, as reflected in the relatively unperturbed widths of the 245 VB and CB of this material. 246

247 7. Acknowledgements

The authors would like to acknowledge the generous donation by the NVIDIA Corporation via their GPU Grant Program, which helped accelerate the computations done in this work. The financial support for this study was provided by the Ministry of Education, Science and Technological Development of the Republic of Serbia, through the project no. 171001.

253 References

- [1] J. M. Coronado, F. Fresno, M. D. Hernández-Alonso, R. Portela, Design of Advanced Photocatalytic Materials for Energy and Environmental Applications, Green Energy and Technology, Springer-Verlag, London, 2013.
 doi:10.1007/978-1-4471-5061-9.
- [2] S. Girish Kumar, K. Koteswara Rao, Tungsten-based nanomaterials (WO₃
 & Bi₂WO₆): Modifications related to charge carrier transfer mechanisms
 and photocatalytic applications, Applied Surface Science 355 (2015) 939–
 958. doi:10.1016/j.apsusc.2015.07.003.
- [3] H. Fu, L. Zhang, W. Yao, Y. Zhu, Photocatalytic properties of nanosized
 Bi₂WO₆ catalysts synthesized via a hydrothermal process, Applied Catalysis B: Environmental 66 (2006) 100–110. doi:10.1016/j.apcatb.2006.
 02.022.
- [4] L. Yan, Y. Wang, H. Shen, Y. Zhang, J. Li, D. Wang, Photocatalytic
 activity of Bi₂WO₆/Bi₂S₃ heterojunctions: the facilitation of exposed
 facets of Bi₂WO₆ substrate, Applied Surface Science 393 (2017) 496–503.
 doi:10.1016/j.apsusc.2016.10.039.
- [5] H. Fu, C. Pan, L. Zhang, Y. Zhu, Synthesis, characterization and photocatalytic properties of nanosized Bi₂WO₆, PbWO₄ and ZnWO₄ catalysts, Materials Research Bulletin 42 (2007) 696–706. doi:10.1016/j.
 materresbull.2006.07.017.

- [6] J. Ren, W. Wenzhong, L. Zhang, J. Chang, S. Hu, Photocatalytic inactivation of bacteria by photocatalyst Bi₂WO₆ under visible light, Catalysis Communications 10 (14) (2009) 1940–1943. doi:10.1016/j.catcom.
 2009.07.006.
- [7] L. Zhang, H. Wang, Z. Chen, P. K. Wong, J. Liu, Bi₂WO₆ micro/nanostructures: Synthesis, modifications and visible-light-driven photocatalytic
 applications, Applied Catalysis B: Environmental 106 (1) (2011) 1–13. doi: 10.1016/j.apcatb.2011.05.008.
- [8] T. Saison, P. Gras, N. Chemin, C. Chanéac, O. Durupthy, V. Brezová,
 C. Colbeau-Justin, J.-P. Jolivet, New insights into Bi₂WO₆ properties as a
 visible-light photocatalyst, The Journal of Physical Chemistry C 117 (44)
 (2013) 22656–22666. doi:10.1021/jp4048192.
- [9] N. Tian, Y. Zhang, H. Huang, Y. He, Y. Guo, Influences of Gd Substitution on the Crystal Structure and Visble-Light-Driven Photocatalytic
 Performance of Bi₂WO₆, The Journal of Physical Chemistry C 118 (2014)
 15640–15648. doi:10.1021/jp500645p.
- [10] S. Guo, X. Li, H. Wang, F. Dong, Z. Wu, Fe-ions modified mesoporous
 Bi₂WO₆ nanosheets with high visible light photocatalytic activity, Journal
 of Colloid and Interface Science 369 (1) (2012) 373–380. doi:10.1016/j.
 jcis.2011.12.007.
- [11] L. Zhang, Y. Man, Y. Zhu, Effects of Mo Replacement on the Structure
 and Visible-Light-Induced Photocatalytic Performances of Bi₂WO₆ photo catalyst, ACS Catalysis 1 (8) (2011) 841–848. doi:10.1021/cs200155z.
- [12] R. Shi, G. Huang, J. Lin, Y. Zhu, Photocatalytic Activity Enhancement
 for Bi₂WO₆ by Fluorine Substitution, Journal of Physical Chemistry C
 113 (45) (2009) 19633–19638. doi:10.1021/jp906680e.
- ³⁰⁰ [13] Y. Wei, X. Wei, S. Guo, Y. Huang, G. Zhu, J. Zhang, The effects of Br

- dopant on the photo-catalytic properties of Bi₂WO₆, Materials Science and Engineering B 206 (2016) 79–84. doi:10.1016/j.mseb.2015.12.004.
- [14] P. Dumrongrojthanath, A. Phuruangrat, S. Thongstem, T. Thongstem,
 Hydrothermal preparation of visble-light-driven Br-doped Bi₂WO₆ photo catalyst, Materials Letters 209 (2017) 501-504. doi:10.1016/j.matlet.
 2017.08.089.
- [15] A. H. Ahsaine, A. Eljaouhari, A. Slassi, M. Ezahri, A. Benlhachemi,
 B. Bakiz, F. Guinneton, J. R. Gavarri, Electronic band structure and
 visible-light photocatalytic activity of Bi₂WO₆: elucidating the effect of
 lutetium doping, RSC Advances 6 (2016) 101105–101114. doi:10.1039/
 C6RA22669H.
- [16] R. Chen, C. H. Hu, S. Wei, J. H. Xia, J. Cui, H. Y. Zhou, Synthesis and Activity of Ag-Doped Bi₂WO₆ Photocatalysts, in: Energy and Environment Materials, Vol. 743 of Materials Science Forum, Trans Tech Publications Ltd, 2013, pp. 560–566. doi:10.4028/www.scientific.net/MSF. 743-744.560.
- ³¹⁷ [17] J. Wang, X. Gao, F. Fu, L. Zhang, Y. Wu, Photocatalytic Degradation of
 ³¹⁸ Phenol-containing Wastewater over Cu-Bi₂WO₆ Composite under Visible
 ³¹⁹ Light Irradiation, Journal of Residuals Science and Technology 9 (3)
 ³²⁰ (2012) 101–106.
- URL https://www.destechpub.com/wp-content/uploads/2019/01/ JRST-Volume-9-Number-3-July-2012.pdf?x82929
- [18] X. C. Song, Y. F. Zheng, M. Rong, Y. Y. Zhang, H. Y. Yin, Photocatalytic activities of Mo-doped Bi₂WO₆ three-dimensional hierarchical
 microspheres, Journal of Hazardous Materials 192 (1) (2011) 186–191.
 doi:10.1016/j.jhazmat.2011.05.001.
- [19] C. Bhattacharya, H. C. Lee, A. J. Bard, Rapid Screening by Scanning
 Electrochemical Microscopy (SECM) of Dopants for Bi₂WO₆ Improved

- Photocatalytic Water Oxidation with Zn Doping, The Journal of Physical Chemistry C 117 (19) (2013) 9633–9640. doi:10.1021/jp308629q.
- [20] Z. Zhang, W. Wang, E. Gao, M. Shang, J. Xu, Enhanced photocatalytic
 activity of Bi₂WO₆ with oxygen vacancies by zirconium doping, Journal of
 Hazardous Materials 196 (2011) 255–262. doi:10.1016/j.jhazmat.2011.
 09.017.
- [21] W. Zhang, N. Yu, L. Zhang, K. Jiang, Y. Chen, Z. Chen, Synthesis of Yb³⁺/Er³⁺ co-doped Bi₂WO₆ nanosheets with enhanced photocatalytic activity, Materials Letters 163 (2016) 16–19. doi:10.1016/j.matlet.2015.
 09.113.
- [22] Y. Su, G. Tan, C. Xu, T. Liu, Y. Wang, H. Ren, A. Xia, The up-conversion
 effect induced NIR-photocatalytic performance of Bi_{2-x}Er_xWO₆ photocatalysts, Materials Letters 211 (2018) 175–178. doi:10.1016/j.matlet.
 2017.09.115.
- M. Wang, Z. Qiao, M. Fang, Z. Huang, Y. Liu, X. Wu, C. Tang, H. Tang,
 H. Zhu, Synthesis of Er-doped Bi₂WO₆ and enhancement in photocatalytic
 activity induced by visible light, RSC Advances 5 (2015) 94887–94894.
 doi:10.1039/C5RA19164E.
- ³⁴⁷ [24] R. M. Mohamed, E. S. Aazam, Enhancement of photocatalytic properties
 of Bi₂WO₆ nanoparticles by Pt deposition, Materials Research Bulletin
 ³⁴⁹ 48 (9) (2013) 3572–3578. doi:10.1016/j.materresbull.2013.05.062.
- [25] Y. Liu, W. Wang, Z. Fu, H. Wang, Y. Wang, J. Zhang, Nest-like strucures
 of Sr doped Bi₂WO₆: synthesis and enhanced photocatalytic properties,
 Materials Science and Engineering B 176 (16) (2011) 1264–1270. doi:
 10.1016/j.mseb.2011.07.014.
- ³⁵⁴ [26] X. C. Song, W. T. Li, W. Z. Huang, H. Zhou, H. Y. Yin, Y. F. Zheng,
 ³⁵⁵ Enhanced photocatalytic activity of cadmium-doped Bi₂WO₆ nanoparticles

- under simulated solar light, Journal of Nanoparticle Research 17 (3) (2015)
 134. doi:10.1007/s11051-015-2945-1.
- [27] X. Xu, Y. Ge, B. Li, F. Fan, F. Wang, Shape evolution of Eu-doped Bi₂WO₆
 and their photocatalytic properties, Materials Research Bulletin 59 (2014)
 329–336. doi:10.1016/j.materresbull.2014.07.050.
- ³⁶¹ [28] W. T. Li, W. Z. Huang, H. Zhou, H. Y. Yin, Y. F. Zheng, X. C. Song,
 ³⁶² Synthesis and photoactivity enhancement of Ba doped Bi₂WO₆ photocat³⁶³ alyst, Materials Research Bulletin 64 (2015) 432–437. doi:10.1016/j.
 ³⁶⁴ materresbull.2015.01.023.
- [29] K. Lai, Y. Zhu, J. Lu, Y. Dai, B. Huang, N- and Mo-doping Bi₂WO₆ in
 photocatalytic water splitting, Computational Materials Science 67 (2013)
 88–92. doi:10.1016/j.commatsci.2012.08.024.
- [30] Y. Zhang, Y. Ma, Q. Liu, H. Jiang, Q. Wang, D. Qu, J. Shi, Synthesis of
 Er³⁺/Zn²⁺ co-doped Bi₂WO₆ with highly efficient photocatalytic performance under natural indoor weak light illumination, Ceramics International
 43 (2) (2017) 2598-2605. doi:10.1016/j.ceramint.2016.11.069.
- [31] F. Ren, J. Zhang, Y. Wang, Enhanced photocatalytic activities of Bi₂WO₆
 by introducing Zn to replace Bi lattice sites: a first-principles study, RSC
 Adv. 5 (2015) 29058–29065. doi:10.1039/C5RA02735G.
- [32] G. Kresse, J. Furthmüller, Efficient iterative schemes for *ab initio* totalenergy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996)
 11169–11186. doi:10.1103/PhysRevB.54.11169.
- [33] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector
 augmented-wave method, Phys. Rev. B 59 (1999) 1758–1775. doi:10.
 1103/PhysRevB.59.1758.
- [34] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approxima tion Made Simple, Phys. Rev. Lett. 77 (1996) 3865–3868. doi:10.1103/
 PhysRevLett.77.3865.

- [35] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations,
 Phys. Rev. B 13 (1976) 5188–5192. doi:10.1103/PhysRevB.13.5188.
- [36] D. A. Rae, J. G. Thompson, R. L. Withers, Structure Refinement
 of Commensurately Modulated Bismuth Tungstate, Bi₂WO₆, Acta
 Crystallographica Section B 47 (6) (1991) 870–881. doi:10.1107/
 S0108768191008030.
- [37] N. A. McDowell, K. S. Knight, P. Lightfoot, Unusual High-Temperature
 Structural Behaviour in Ferroelectric Bi₂WO₆, Chemistry A European
 Journal 12 (5) (2006) 1493–1499. doi:10.1002/chem.200500904.
- [38] H. Djani, P. Hermet, P. Ghosez, First-Principles Characterization of the
 P21ab Ferroelectric Phase of Aurivillius Bi₂WO₆, The Journal of Physical
 Chemistry C 118 (25) (2014) 13514–13524. doi:10.1021/jp504674k.
- [39] S. R. Bahn, K. W. Jacobsen, An object-oriented scripting interface to
 a legacy electronic structure code, Computing in Science & Engineering
 4 (3) (2002) 56-66. arXiv:https://aip.scitation.org/doi/pdf/10.
 1109/5992.998641, doi:10.1109/5992.998641.
- 1109/5992.998641, doi:10.1109/5992.998641.
- 400 URL https://aip.scitation.org/doi/abs/10.1109/5992.998641
- [40] F. Tran, P. Blaha, Importance of the kinetic energy density for band
 gap calculations in solids with density functional theory, The Journal
 of Physical Chemistry A 121 (17) (2017) 3318-3325, pMID: 28402113.
 doi:10.1021/acs.jpca.7b02882.
- [41] A. Kudo, S. Hijii, H₂ or O₂ Evolution from Aqueous Solutions on Layered
 Oxide Photocatalysts Consisting of Bi³⁺ with 6s² Configuration and d⁰
 Transition Metal Ions, Chemistry Letters 28 (10) (1999) 1103–1104. doi:
 10.1246/cl.1999.1103.
- ⁴⁰⁹ [42] Y. Zhou, Y. Zhang, M. Lin, J. Long, Z. Zhang, H. Lin, J. C. S. Wu,
- 410 X. Wang, Monolayered Bi₂WO₆ nanosheets mimicking heterojunction in-

- terface with open surfaces for photocatalysis, Nature Communications 6
 (2015) 8340. doi:10.1038/ncomms9340.
- [43] M. Teck, M. M. Murshed, M. Schowalter, N. Lefeld, H. K. Grossmann,
 T. Grieb, T. Hartmann, L. Robben, A. Rosenauer, L. Mädler, T. M.
 Gesing, Structural and spectroscopic comparison between polycrystalline,
 nanocrystalline and quantum dot visible light photo-catalyst Bi₂WO₆,
 Journal of Solid State Chemistry 254 (2017) 82–89. doi:10.1016/j.jssc.
 2017.07.013.
- [44] J. Tang, Z. Zou, J. Ye, Photocatalytic decomposition of organic contaminants by Bi₂WO₆ under visible light irradiation, Catalysis Letters 92 (1–2)
 (2004) 53–56. doi:10.1023/B:CATL.0000011086.20412.aa.
- [45] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, G. E. Scuseria, Influence of
 the exchange screening parameter on the performance of screened hybrid
 functionals, The Journal of Chemical Physics 125 (22) (2006) 224106. doi:
 10.1063/1.2404663.
- [46] J. Paier, M. Marsman, K. Hummer, G. Kresse, I. C. Gerber, J. G. Ángyán,
 Screened hybrid density functionals applied to solids, The Journal of Chemical Physics 124 (15) (2006) 154709. doi:10.1063/1.2187006.
- [47] L. Zhou, M. Yu, J. Yang, Y. Wang, C. Yu, Nanosheet-Based
 Bi₂Mo_xW_{1-x}O₆ Solid Solutions with Adjustable Band Gaps and Enhanced
 Visible-Light-Driven Photocatalytic Activities, The Journal of Physical
 Chemistry C 114 (44) (2010) 18812–18818. doi:10.1021/jp107061p.