
*Corresponding author: e-mail cjeca@vinca.rs, fax +381-11-3408-681, phone +381-11-3408-549 

Tailoring the photocatalytic properties of anatase TiO2 by B-TM (TM = Pt, Ta, V) co-

doping 

J. Belošević-Čavor*, V. Koteski, V. Ivanovski, A. Umićević, D. Toprek 

Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of 

Belgrade, Belgrade, Serbia 

Abstract 

In order to provide insight into the influence of co-doping with boron (B) and transition metals 

(TM = Pt, Ta, V) on the photoactivity of anatase TiO2, the electronic, structural and optical 

characteristics of the mentioned co-doped systems were studied using modified density functional 

theory calculations. For each transition metal two cases were considered, with B atom either 

replacing O atom (B-substitutional) or imbedding interstitially (B-interstitial) into TiO2 lattice. 

The calculations showed that the co-doping is more favorable for the B-interstitial systems than 

for the B-substitutional ones and under the O-rich conditions. For the B-substitutional cases a slight 

decrease of the band gap is observed. In contrast, the results obtained for the B-interstitial systems 

exhibited no band gap narrowing. However, in these systems, the occurrence of localized states 

within the band gap is noticed, which could improve visible light absorption through a two-step 

optical transition. 
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1. Introduction 

Titanium dioxide (TiO2) is promising photocatalyst for an effective decomposition of organic 

pollutants and photocatalytic hydrogen production. However, due to its wide band gap (3.2 eV), it 

mainly absorbs light from the UV region, meaning that only about 5% of the solar spectrum can 

be utilized for a photocatalytic reaction. The main adopted strategy to overcome this constraint is 



2 
 

doping with either metal cations or nonmetal anions, which creates additional states into the 

forbidden gap and/or above the valence band maximum (VBM). However, the monodoped 

systems are limited by high recombination rate of the photogenerated electron-hole pairs, which is 

not favorable for the photocatalytic reaction [1]. In recent years, passivated co-doping with 

nonmetal and metal elements was proposed [2] in order to produce synergistic effect to increase 

the visible light absorption and at the same time decrease the charge recombination rate. Among 

nonmetals the most investigated co-dopants are N and C, forming pairs mostly with Cu [3-9], but 

also with other metals (La, Cr, W, V, Sb, Nb, Sn, Zr, Ta, Sm, Fe, Ni, Pt, Pd) [10-29] and elements 

[30, 31], while B anion is the least studied element for co-doping with metal cations.  

B-Ni co-doped TiO2 was fabricated by Huang and coworkers [32] and it exhibited superior 

photocatalytic activity for NO removal in comparison with its monodoped and undoped 

counterparts. Gong et al. [33] produced B and Ta co-doped TiO2 samples that showed much better 

efficiency for photodegradation of methylene blue (MB) solution under solar light irradiation than 

undoped and monodoped samples. Jaiswal et al. [34] found that the photocatalytic degradation 

level of aqueous pollutants enhanced remarkably for TiO2 co-doped with Co and B on 

substitutional and interstitial sites as compared to single doped and undoped TiO2. Ibrahim et al. 

[35] calculated the optical properties of (Cr, B) co-doped anatase TiO2 and found that its absorption 

edge extended to the visible light region and the absorption efficiency was enhanced. Azizi et al. 

[36] produced the carbon/boron co-doped TiO2 sample which was efficient for the removal of 4-

nitrophenol. B-Zr [37, 38], B-Bi [39, 40] and B-La [41] co-doped TiO2 also showed good 

photocatalytic properties for the degradation of organic pollutants. 

In the present paper, the structural, electronic and optical properties of (B, TM) co-doped (TM = 

Pt, Ta, V) anatase TiO2 are explored using the calculations based on modified density functional 



3 
 

theory (DFT), in order to provide insight into the synergistic effect of co-doping on the 

photocatalytic performance of TiO2. As it was demonstrated earlier that B atoms can be settled at 

both the interstitial and substitutional sites in TiO2 [34, 37, 41-43], we considered both possibilities 

for each co-doped system, i.e., with B atom either replacing O atom (B-substitutional) or 

incorporating interstitially (B-interstitial) into TiO2 lattice. 

2. Calculation details 

The full potential augmented plane waves plus local orbitals method within the WIEN2k code [44] 

was employed for the calculations. The co-doped structures were constructed from the relaxed 2 x 

2 x 1 (48 atoms) anatase supercell, by replacing one O atom with B and one neighboring Ti atom 

with transition metal (TM = Pt, Ta, V). We also simulated systems where one B atom, instead of 

replacing O, was embedded interstitially into the supercell. The k-points mesh was created by 

tetrahedron method [45] with 726 and 54 k points in the irreducible wedge of the Brillouin zone 

for pure TiO2 and co-doped systems, respectively. The limiting parameter for the number of plane 

waves, RMTKmax, was 7 and the parameter for Fourier expansion of charge, Gmax, was 16. All the 

structures were relaxed using the PBE-GGA [46] exchange-correlation functional til the forces on 

each atom were smaller than 5 mRy / a.u. and then modified Becke-Johnson (mBJ) potential [47] 

was applied to calculate the band structures and densities of states (DOS) of the relaxed systems. 

The mBJ potential has been proved to give good agreement between the measured band gaps and 

the calculated ones with less computational cost than hybrid potentials and the GW method, except 

in the case of strongly localized systems with f states [48, 49].  

3. Results and discussion 

3.1. Dopant formation energies 
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To study the relative difficulty of doping of B and TM atoms into the TiO2 lattice under diverse 

growth conditions, we computed the co-doping formation energies for all investigated systems 

using the general formula: 

Eform = Edoped – Epure – mB - nTM + xO + yTi, 

Where Edoped is the total energy of the co-doped TiO2 supercell, Epure is the total energy of the TiO2 

supercell without the dopant atoms, m and n are the numbers of B and TM atoms doped into the 

TiO2 supercell, x and y are the numbers of O and Ti atoms replaced by impurity atoms and  are 

the chemical potentials of the corresponding atoms. In our case, the formula comes down to 

Eform = Edoped – Epure – B - TM + O + Ti,  

when B is embedded substitutionally and 

Eform = Edoped – Epure – B - TM + Ti, 

when B is embedded interstitially. 

The chemical potentials of transition metals TM are given as the total energies of corresponding 

bulk materials, while B is the energy of a B atom calculated from the formula 

B = ½ EB2H6 – 3/2 EH2, 

where B2H6 has structure with P21/n space group. The dopant formation energies computed under 

Ti-rich (Ti is the total energy of bulk Ti, while O = ½ (TiO2 - Ti)) and O-rich (O is half the 

energy of the ground state of O2 molecule, while Ti = TiO2 – 2 O) growth conditions are given 

in table 1. It can be observed that the co-doping is less favorable under the Ti-rich than under the 

O-rich growth conditions. The co-doped samples with Ta and V have similar formation energies, 

which are much smaller than the formation energy of the system co-doped with Pt, regardless of 

the growth conditions. The calculations show that the co-doping with interstitial boron is preferred, 
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similarly as for the boron-doped anatase [43]. The formation energies for substitutionally (B, Pt) 

co-doped anatase are high, indicating that this system is not stable under normal conditions. 

Table 1: Dopant formation energies of the investigated systems 

B-substitutional 

 

Pt 

Ta 

V 

 

B-interstitial 

 

Pt 

Ta 

V 

 

O – rich [eV] Ti – rich [eV] 

 

6.9 

1.1 

1.2 

 

 

 

-2.4 

-8.9 

-8.6 

 

 

 

12.0 

6.1 

6.2 

 

 

 

7.7 

1.1 

1.4 

 

3.2. Charge distribution analysis 

We used the Bader’s atoms in molecule theory [50], as embedded in the Critic2 code [51] to 

calculate the charge distribution between the atoms. The calculated results are given in Table 2. 

Table 2: Bader charges of Ti, O, B and TM atoms,expressed in electrons 

  Ti O B TM 

B-substitutional                    

Pt   2.41  -1.17   1.09  0.44 

Ta   2.09      -1.32         2.02  2.99 

V  2.32 -1.27   2.36 2.02 

B-interstitial      

Pt  2.57 -1.64   2.71 1.86 

Ta  2.55 -1.69   2.71 3.45 

V  2.60 -1.72  2.30 1.90 
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We can see that in all studied cases, the O atom gets part of the charge at the expense of other 

atoms, as a consequence of its electronegativity being larger than all the other atoms involved. The 

ratio of the charge transferred from transition metal to oxygen atom is aligned with their 

electronegativity (Ta atom has the largest, while Pt atom has the smallest quantity of charge 

transferred). 

3.3. Electronic properties 

In order to explore variations in the band gap for various co-doped anatase systems, the 

corresponding band structures were calculated. Our calculations showed that pure anatase TiO2 

has an indirect band gap between X and  points with a value of 3.13 eV, which is in agreement 

with the experimental value (3.2 eV) [52]. In the case of substitutionally doped boron (figure 1), 

B and Pt co-incorporation leads to a reduction of the band gap by about 15%, to 2.64 eV, while 

for the (B, Ta) and (B, V) co-doped systems, the band gaps are only slightly narrowed (3.05 eV 

and 3.10 eV, respectively) as compared to the pure TiO2. However, two isolated energy states are 

formed in the middle of the band gap region, which can serve as stepping stones for electron 

transition, but at the same time as electron-hole recombination centers. The calculated band gap 

reduction for (B, Ta) co-doped anatase of 0.08 eV, compares well with the value of 0.11 eV, 

measured in paper by Gong et al. [33]. 

To further understand the effect of (B, TM) co-doping on anatase TiO2, the total and projected 

densities of states of pure and co-doped systems were calculated (figures 2 and 3). As expected, in 

pure anatase TiO2 the valence band is principally composed of the O 2p states, while the 

conduction band is dominated by Ti 3d states. For (B, Pt) co-doped TiO2, an upward shift of the 

valence band maximum (VBM), caused primarily by the Pt d states is observed. The conduction 

band, in contrast, remains almost unchanged, which in the aggregate leads to the band gap 
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narrowing by 0.49 eV. In the case of (B, Ta) co-doping, two peaks corresponding to the impurity 

states can be clearly seen between VBM and conduction band minimum (CBM), close to the Fermi 

level. These states are mostly of B p character and are located at 1.24 eV and 2.1 eV above the 

VBM in the band gap and are divided by 0.5 eV. For (B, V) co-doped TiO2 the situation is similar, 

except that the states within the band gap are closer to VBM (0.94 eV and 1.65 eV) and that the 

upper state consists of the hybridized V d and B p states. 

 
Figure 1: Band structures for pure and (B-substitutional or interstitial, TM = Pt, Ta, V) co-doped 

anatase TiO2  
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Figure 2: Total densities of states for pure and (B-substitutional, TM = Pt, Ta, V) co-doped anatase 

TiO2 

 

 
Figure 3: Partial densities of states for pure and (B-substitutional, TM = Pt, Ta, V) co-doped 

anatase TiO2 
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When it comes to the systems with interstitially doped boron (figures 1 and 4), they all have 

similar, slightly increased band gap (3.40 eV for V, 3.43 eV for Pt, and 3.48 eV for Ta). However, 

for (B, Pt) co-doped case, the presence of the broad intermediate Pt d states near the middle of the 

band gap and about 2.1 eV below the CBM, could serve as an intermediate step and perhaps 

improve the absorption of lower-energy photons.  

 
Figure 4: Partial densities of states for (B-interstitial, TM = Pt, Ta, V) co-doped anatase TiO2 

 

3.4. Optical absorption 

On the basis of calculated band structures, we firstly computed the imaginary parts of the dielectric 

tensor i () and then employed the Kramers-Kroning relation [53] to get the real ones r (). 

Finally we computed the absorption spectra using the formula: 
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() =  √2 [√𝑖
2() + 𝑟

2() − 𝑖()] 

and they are presented in Figure 5, as a function of the photon wavelength.  

Both a redshift and a blueshift of the absorption edge were observed experimentally in interstitially 

B doped TiO2, which was explained by the fact [42] that boron can occupy different interstitial 

positions in anatase. Yang et al. [54] suggested, based on their calculations, that substitutional B 

doping causes a redshift of the absorption edge and band gap reduction, whereas interstitial B 

doping results in a blueshift, which is consistent with the experimental work of Huang et al. [32]. 

However, Lan et al. [41] noticed a small redshift of absorption edge in their B-doped TiO2 sample 

with dominant B interstitials. 

 
Figure 5: Optical absorption spectra of pure and co-doped anatase TiO2, with the inserted 

enlarged visible light region 
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Figure 5 shows that for undoped anatase no absorption is observed in the visible light range. 

However, after co-doping the absorption in this region increases for most of the co-doped systems. 

The increase is particularly pronounced for substitutionally (B, V) and (B, Ta) co-doped anatase, 

due to the generation of broad intermediate bands (IB), which gives the possibility of two-step 

transition between VB and CB through IB.   

3.5. Edge positions 

To study the photocatalytic activity of the investigated co-doped systems, we computed their band 

edges positions, as they have the major influence on the ability of a semiconductor to absorb 

species on its surface. That is to say, the acceptor absorbed on the semiconductor surface, can be 

reduced by the electrons if its potential is lower than the CB potential of the semiconductor and 

the donor absorbed on the semiconductor surface, can be oxidized by the holes if its potential is 

higher than the VB potential of the semiconductor. The CB and VB edge positions of a 

semiconductor can be obtained from the formulas  

ECB = X – Ee – 0.5Eg, and EVB = ECB + Eg, where ECB represents the CB edge potential, X is the 

semiconductor’s electronegativity obtained as the geometric mean of the electronegativities of the 

constituent atoms, Ee is the energy of free electrons on the hydrogen scale (~ 4.5 eV), Eg is the 

semiconductor’s band gap, and EVB is the VB edge potential. 
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Figure 6: Band level diagram for (a) pure, (b) (B-substitutional, Pt) and (c) (B-interstitial, Ta) 

co-doped anatase TiO2 

 

Our calculated conduction band edge potential of TiO2 is -0.253 eV, which is more negative than 

the hydrogen reduction potential (0 eV), while VB edge potential is 2.877 eV, which is more 

positive than oxygen evolution (1.23 eV) and standard redox potential of OH/OH- (1.99 eV), 

meaning that TiO2 can be used for these reactions. (B-interstitial, Ta) co-doped TiO2 has calculated 

CB edge of -0.444 eV and VB edge of 3.036 eV, which means that both its oxidation and reduction 

abilities are slightly increased. In contrast, (B- substitutional, Pt) co-doped TiO2 is poorly suitable 

for hydrogen evolution, as it has CB edge of -0.0189 eV, but with VB edge of 2.62 eV it can safely 

be used for oxygen evolution. 

4. Conclusion 

Using the augmented plane waves plus local orbitals method and the modified Becke-Johnson 

correction for the band gap, as implemented in WIEN2k simulation package, we have conducted 

a series of calculations of anatase TiO2 co-doped with boron and various transition metals, in order 

to investigate their properties of interest for photocatalytic applications. We have calculated band 

gaps, densities of states, absorption coefficients and band level arrangements of TiO2 

substitutionally and interstitially co-doped with B and Pt, Ta, and V.  The calculations showed that 
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although the co-doping is more energetically favorable for the interstitially co-doped cases, the 

band gap reduction and the improvement of the absorption in the visible light region occurs for the 

substitutionally doped ones. 
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